Managing Pain & Irritability in Non-verbal Children

Dr Ross Drake
Paediatric Palliative Care & Pain Medicine Specialist
Starship Child Health, New Zealand
Vignette’s – Encephalopathy

Static – 15yr old male with cerebral palsy (GMFCS IV)
- spastic quadriplegia – largely bed-bound
- non-verbal
- seizures
- bulbar palsy requiring gastrostomy feeding
- excessive secretions with recurrent aspirations
- frequent admissions for pneumonia resulting in longer hospital stays
- main issue is irritability & agitation

Progressive – 15yr old male with juvenile NCL
- mostly in bed; less tolerant of wheelchair
- essentially non-verbal
- seizures
- oral feeding; prolonged with associated choking episodes
- excessive secretions
- increasing admissions to hospital for irritability & agitation
Definitions

- **Agitation** – unpleasant state of arousal manifesting as irritability, restlessness, & increased motor activity

- **Irritability** – abnormal response to stimuli or physiological arousal

View agitation & irritability as a communication of need

Causes – pain, anxiety, acute illness, medications
Pain Assessment

- tools available for non-verbal children

- observational scales
 - Revised FLACC (R-FLACC)
 - Individualized Numeric Rating Scale (I-NRS)
 - Non-Communicating Children’s Pain Checklist-Revised (NCCPC-R)
 - Paediatric Pain Profile (PPP)
Clinical Utility Comparison

<table>
<thead>
<tr>
<th>Tool</th>
<th>Utility</th>
<th>Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-FLACC</td>
<td>Demonstrated feasibility for use in the acute care setting related to ease of use.</td>
<td>Crosta et al. 2014</td>
</tr>
<tr>
<td>NCCPC-R</td>
<td>Clinicians indicated too complex and long compared with other tools for use with this group of children.</td>
<td>Voepel-Lewis et al. 2008</td>
</tr>
<tr>
<td>Paediatric Pain Profile (PPP)</td>
<td>Use in acute clinical setting limited by time required to complete and teaching needed to use.</td>
<td>Hunt & Franck 2011; Chen-Lim et al. 2012</td>
</tr>
<tr>
<td></td>
<td>Parents perceived it as more accurate even though difficult to use in clinical setting.</td>
<td>Chen-Lim et al. 2012</td>
</tr>
</tbody>
</table>
Revised FLACC Scale

<table>
<thead>
<tr>
<th>FACE</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>No particular expression or smile</td>
<td>Occasional Grimace or frown, withdrawn, disinterested</td>
<td>Appears sad or worried</td>
<td>Frequent to constant frown, clenched jaw, quivering chin</td>
</tr>
<tr>
<td>Individual behaviour:</td>
<td>Individual behaviour:</td>
<td>Individual behaviour:</td>
<td>Distressed-looking face; expression of fright or panic</td>
</tr>
<tr>
<td>LEGS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Normal position or relaxed</td>
<td>Uneasy, restless, tense</td>
<td>Occasional tremors</td>
<td>Kicking or legs drawn up</td>
</tr>
<tr>
<td>Usual tone & motion to limbs</td>
<td></td>
<td></td>
<td>Marked increase in spasticity, constant tremors or jerking</td>
</tr>
<tr>
<td>Individual behaviour:</td>
<td>Individual behaviour:</td>
<td>Individual behaviour:</td>
<td></td>
</tr>
<tr>
<td>ACTIVITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Lying quietly, normal position, moves easily</td>
<td>Squirming, shifting back & forth, tense</td>
<td>Tense or guarded movements, mildly agitated (e.g. head back and forth, aggression); shallow, splinting respirations, intermittent sighs</td>
<td>Arched, rigid or jerking</td>
</tr>
<tr>
<td>Regular, rhythmic respirations</td>
<td></td>
<td></td>
<td>Severe agitation; head banging; shivering (not rigors); breath holding, gasping or sharp intake of breaths, severe splinting</td>
</tr>
<tr>
<td>Individual behaviour:</td>
<td>Individual behaviour:</td>
<td>Individual behaviour:</td>
<td></td>
</tr>
<tr>
<td>CRY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>No cry, awake or asleep</td>
<td>Moans or whimper, occasional complaint</td>
<td>Occasional verbal outburst or grunt</td>
<td>Crying steadily, screams or sobs, frequent complaints</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Repeated outbursts, constant grunting</td>
</tr>
<tr>
<td>Individual behaviour:</td>
<td>Individual behaviour:</td>
<td>Individual behaviour:</td>
<td></td>
</tr>
</tbody>
</table>

CONSOLABILITY			
0	1	2	
Content relaxed	Reassured by occasional touching, hugging or "talking to", distractable		Difficult to console or comfort
			Pushing away care giver, resisting care or comfort measures
Individual behaviour:	Individual behaviour:	Individual behaviour:	

Interpreting the Score Total 0-10

<table>
<thead>
<tr>
<th>0</th>
<th>1-3</th>
<th>4-6</th>
<th>7-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relaxed and comfortable</td>
<td>Mild discomfort</td>
<td>Moderate discomfort</td>
<td>Severe pain or discomfort or both</td>
</tr>
</tbody>
</table>

The revised FLACC observational pain tool: improved reliability and validity for pain assessment in children with cognitive impairment. Pediatric Anaesthesia 2006 16: 268-265
Princess Margaret Hospital for Children, Pain Services. September 2007.*
Revised FLACC

- improved reliability & validity in children with cognitive impairment
- additional descriptors validated in children with cognitive impairment

- clinical utility more highly rated than other tools for neurologically impaired children
 Voepel-Lewis et al 2008

- nurse can review descriptors with parents
 - ask about additional behaviors that are better indicators in their child
 - add these to the tool in the appropriate category
Pain Behaviours

- vocalisations – crying, moaning
- facial expression – grimacing
- consolability – less consolable
- interactivity – withdrawn, less active
- physiological responses – pale, sweating
- movement – pulls legs up, restless
- tone & posture – arching, stiffening
- idiosyncratic behaviors – laughing

Sources of Pain Behaviours

- Nociceptive Pain
- Neuropathic Pain
- Central/Peripheral
- Spasticity
- Autonomic Dysfunction
- Visceral Hyperalgesia

Blue boxes = impaired nervous system
<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spasticity</td>
<td>Velocity dependent; not painful</td>
</tr>
<tr>
<td>Muscle spasm</td>
<td>Intermittent; can result in pain and be triggered by pain</td>
</tr>
<tr>
<td>Dystonia</td>
<td>Twisting and repetitive movements and/or abnormal postures; worsened by pain</td>
</tr>
<tr>
<td>Dysautonomia, PAID, Storms</td>
<td>Facial flushing, sweating, hyperthermia, vomiting, GI pain</td>
</tr>
<tr>
<td>Central Pain</td>
<td>Abrupt onset of pain “out of the blue”; pain localized to GI tract</td>
</tr>
<tr>
<td>Visceral Hyperalgesia</td>
<td>Sensitization of visceral afferents; GI pain with distension</td>
</tr>
</tbody>
</table>
Vignette – Episodes of Distress

15 year old with CP
- frequent, daily episodes of crying, grimacing, sweating, tachycardia, increased muscle spasms, seizures

15 year old with NCL
- in constant / perpetual motion
- associated rocking, groaning, grimacing, sweating, increased muscle tone, seizures
- prolonged periods of insomnia

Consider pain as cause
- Nociceptive
- Neuropathic
- Nociplastic
Nociceptive Pain

Pain due to activation of nociceptors arising from actual or threatened damage to non-neural tissue

Somatic
- dental
- otitis media
- corneal abrasion
- urinary tract infection
- osteoporosis
- fracture
- hip subluxation

Visceral
- GOR disease
- G-tube site
- GI distension
- cholecystitis
- pancreatitis
- renal stones
Normal Sensation

- inflammatory response
- peripheral sensitisation

Woolf C. Pain 2011;152:S2
Vignette – Nociceptive Stimuli

Medical assessment CP
- aspiration pneumonia – antibiotics
- review personal cares
 - positioning, bowel habit, gastrostomy venting...
- review medication use
- gastrostomy feeding; not tolerating full feeds – reduce to 2/3rd's

Pain behaviours improve but not resolved after 1 month

Medical assessment NCL
- pneumonia – antibiotics
- review personal cares
- review medication use
 - not tolerating volume; rationalize
- not tolerating oral feeds; parents to consider NG feeding – 50% oral/50% NG
- parent welfare discussed

Pain behaviours continue
Neuropathic Pain

Pain caused by a lesion or disease of the somatosensory nervous system

- Peripheral
- Central
Mechanism – Neuropathic Pain

- **peripheral**
 - inflammatory response
 - peripheral sensitisation

- **central**
 - glutamate – excitatory neurotransmitter
 - NMDA channel opens
 - inflammatory response
 - loss of inhibition
 - hyperexcitability of spinal cord dorsal horn neurons
Nociplastic Pain

Pain arising from altered nociception despite no clear evidence of actual or threatened tissue damage causing activation of peripheral nociceptors or evidence for disease or lesion of somatosensory system causing pain.
Nociplastic Pain = Central Sensitisation

Top – mismatch between stimulus & response

Bottom – disruption of normal specialisation results in aberrant convergence

Woolf C. Pain 2011;152:S2
Mechanism – Nociplastic Pain

- peripheral
 - inflammatory response
 - peripheral sensitisation
- central (at spinal cord DHN)
 - microglia activation
 - inflammatory response
 - loss of inhibition

= Central Sensitisation
Somatosensory Pathways

- Projection neurons send information to SS cortex via thalamus (VP)
 - Location & intensity of the painful stimulus
- Other neurons engage cingulate & insular cortices via brainstem (parabrachial nucleus & amygdala)
 - Affective component of pain experience
- Ascending information accesses neurons of RVM & midbrain PAG
 - Engage descending feedback to regulate output from spinal cord
CNS Pain

Thalamus

Periaqueductal grey matter

Peripheral sensitisation
Response to tissue injury

Injury induced Na channel accumulation = ectopic firing

Central sensitisation
1) C-fibre activity drives changes in 2nd neuron
2) Glial activation & cytokine release
Result in hyperexcitability & synaptic efficiency

Dorsal horn

Reduced inhibition in dorsal horn

Altered synaptic transmission – Ca++ channel α2δ dysfunction

Slide courtesy of EPEC-Ped

Peripheral sensitisation
Response to tissue injury

22
Vignette’s – Unresolved Symptoms

- introduce integrated pain management strategies
- mix of pharmacological & non-pharmacological
Fix vs. Modify

“Fix” = nociceptive pain
- urinary tract infection
- fracture
- renal stones
- medication toxicity

“Modify” = intractable (not easily “fixed”) symptoms
- seizures
- CNS pain
- dysautonomia
- GI motility
Non-Pharmacological

- rocking, massage, repositioning
- fan, cool air, music, water, aromatherapy
- vibratory stimulation – mats, pillows
- supportive equipment – seating, pillows
- calm environment
- day/night routine – sleep
- GI tract distention – overfeeding, constipation
Vignette CP – Introduce Gabapentin

Weight 30kg
- start at 10 mg/kg/day; x3 per day = 100 mg tds
 - can start at lower dose of 5 mg/kg/day
- increase at 4 day intervals
- reasonable dose is 30 mg/kg/day or 300 mg tds
- can maximize to 60 mg/kg/day or 600 mg tds
- effect noticed by 3rd day of starting
- titrated to 300 mg tds
- significant improvement
 - smiling/giggling
 - improved sleep
 - no day-time sedation
- continued benefit over time
Medication Options

First Line
Gabapentinoind

Second Line
Clonidine | Tricyclic antidepressant

Third Line
Methadone | Cannabinoids
Rationale for Medication

<table>
<thead>
<tr>
<th>Medication</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clonidine</td>
<td>Dysautonomia, Spasticity, Sleep</td>
</tr>
<tr>
<td>Tricyclic (TCA)</td>
<td>Central neuropathic pain, Sleep</td>
</tr>
<tr>
<td>Methadone</td>
<td>Central neuropathic pain</td>
</tr>
<tr>
<td>Cannabinoids</td>
<td>Spasticity, Muscle Spasms</td>
</tr>
<tr>
<td>PRN (opioids, benzodiazepines, clonidine)</td>
<td>Breakthrough pain, Spasticity, Autonomic storm</td>
</tr>
</tbody>
</table>

Dosing guidelines in AAP Clinical Report Table 8
CNS Pain

Central sensitisation
1) C-fibre activity drives changes in 2nd neuron
2) Glial activation & cytokine release

Result in hyperexcitability & synaptic efficiency

Peripheral sensitisation
Response to tissue injury

Altered synaptic transmission
- Ca\(^{++}\) channel \(\alpha_2\delta\) dysfunction

Reduced inhibition in dorsal horn

Descending inhibition

Thalamus

Periaqueductal grey matter

Dorsal horn

2nd Neuron

Aδ or C-fibre

Periphery

Slide courtesy of EPEC-Ped
Periaqueductal grey matter

Central sensitisation
1) C-fibre activity drives changes in 2nd neuron
2) Glial activation & cytokine release

Result in ↑ excitability & synaptic efficiency

Injury induced Na channel accumulation = ectopic firing

Peripheral sensitisation
Response to tissue injury

Thalamus

Dorsal horn

TCA’s – Amitriptyline
Improve inhibitory pathway action

Reduced inhibition in dorsal horn

Altered synaptic transmission – Ca++ channel ?a2? δ dysfunction

NSAIDs

Gabapentinoids
Reduce Ca++ channel activity

Ketamine
NMDA channel blocker

Lignocaine
Na channel blocker

Opioids
Improve inhibition in spinal cord

Slide courtesy of EPEC-Ped

A5 or C-fibre

Periphery

CNS Pain & Medication
Vignette NCL – Medication Review

- Paracetamol 1Gm bd; 1Gm PRN
- Gabapentin 1200mg mane, 900mg midday, 1500mg nocte
- Amitriptyline 75mg nocte
- Morphine 2.5 to 5mg q1h PRN
- THC & CBD oil
 - dose of THC has been escalating
- Quetiapine 200mg nocte; 200mg after 2 hrs PRN
- Temazepam 30mg nocte
- Midazolam 10mg SL PRN for seizures
Suggested Alterations

Stop – not helping
- Paracetamol
- Morphine
- Gabapentin (large volume)
- CBD oil

Alter – rationalize
- Amitriptyline
- THC oil (wean)
- Quetiapine (wean)
- Temazepam (wean)
New Regimen (Recommended)

- Pregabalin 300mg bd
- Amitriptyline 25mg mane, 50mg nocte
- THC oil 6 mL QID – weaning

For Breakthrough Agitation/Pain
- Oxycodone 5-7.5mg after 1 hr; then
- Diazepam 5-10mg after 1 hr; then
- THC oil 6 mL after 30 min

- Quetiapine 200mg nocte; 100mg after 2 hrs PRN – weaning
- Temazepam 15mg at night – weaning
- Midazolam 5-10mg SL PRN for seizures
Vignette NCL – Introduce Methadone

Weight 65kg
- Methadone 2.5mg mane, 2.5mg midday, 5mg nocte
- can increase for unresolved pain/agitation

- effect noticed within 48hr
- significant improvement in pain behaviours
 - minimal agitation
 - improved sleep
 - no sedation
- increases with time to 5 mg then 10 mg tds
Opioids & Pain

Endogenous opioids released by inhibitory neuron in dorsal horn
- bind to opioid receptors
- inhibits pre-synaptic release of glutamate
- prevent transmission to higher centres

Exogenous opioids
- bind to opioid receptor
- prevent transmission to higher centres
Ketamine & Pain

Excitatory (glutamate) neurotransmitters activate NMDA channel

Ketamine resets by blocking NMDA channel
General Principles

- testable & treatable vs. non-testable CNS symptoms
- unable to “fix” CNS problems
- clear communication; lessen mixed messages
- preparing & hoping
- intractable problems require goals of care

Hauer 2014
Management Principles

- review symptom(s)
 - episodes – frequency, duration, severity, triggers…
- check for correctable causes of nociceptive pain
- adjust symptom care plan
 - review non-pharmacological strategies
 - maximize/rationalize medication doses & timing
 - effectiveness of breakthrough symptom care plan

Hauer J, Houtrow A. AAP clinical report, June 2017
Optimal treatment of pain in children with impaired nervous system often requires considerable time and effort to achieve & is most likely accomplished if the overall treatment of pain for the child is guided by broader management strategies and considerations.
Pain Assessment and Treatment in Children With Significant Impairment of the Central Nervous System

Julie Hauer, MD, FAAP,a,b Amy J. Houtrow, MD, PhD, MPH, FAAP,c SECTION ON HOSPICE AND PALLIATIVE MEDICINE, COUNCIL ON CHILDREN WITH DISABILITIES

Abstract

Pain is a significant problem for children with impairment of the central nervous system, with the highest frequency and severity with the greatest impairment. Despite the significance of this issue, the population remains vulnerable to underrecognition and undertreatment of pain. Barriers to treatment may include uncertainty about the nature of pain, difficulty in assessing pain, and concerns about treatment. Early identification and management can improve symptom control, quality of life, and long-term outcomes.